1. **Basic notions of functions** A function is a map from a subset *D* of R to R. The subset *D* is called the <u>domain</u> of *f*. The set $\{(x, f(x)) : x \in D\} \subset \mathbb{R}^2$ is called the graph of *f*. The set $\{f(x): x \in D\}$ is called the range of *f*.

Exercise Write down domain, range of the following functions:

1a.
$$
f(x) = \frac{1}{\sqrt{(|x|-2)(x^2+1)}}
$$
;

Solution The domain is given by $\{x: \sqrt{(|x|-2)(x^2+1)} \neq 0\}$. To turn this into simple expression we have

$$
\{x: \sqrt{(|x|-2)(x^2+1)} \neq 0\}
$$

= $\{x: \sqrt{(|x|-2)(x^2+1)} > 0\}$
= $\{x: |x|-2>0\}$
= $(-\infty, -2) \cup (2, +\infty)$.

The range of f is $(0, +\infty)$.

1b. $f(x) = \log_{10}(\cos x)$

Solution The domain is $\{x: \cos x > 0\}$ i.e. $\{x: -\frac{\pi}{2} + 2k\pi < x < \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\}$. Since $0 < \cos x \leq 1$, so $f(x) \leq 0$ i.e. the range of f is $(-\infty, 0]$.

A subset is called symmetric if both $x \in D$ and $-x \in D$. A function on such *D* is called an <u>odd function</u> if $f(x) + f(-x) = 0$. A function on such *D* is called <u>even</u> if $f(x) = f(-x)$. A typical odd function is $f(x) = x$ on R. A typical even function is $f(x) = |x|$.

Exercise Is the following set symmetric?

1c. $D = \{x: (|x|-1)x > 0\};\$

Solution We solve the inequality $(|x|-1)x>0$ explicitly:

{
$$
x: (|x|-1)x > 0
$$
}
= { $x: x > 0; |x| > 1$ } ∪ { $x: x < 0, |x| < 1$ }
= { $x: x > 1$ } ∪ { $x: -1 < x < 0$ }
= (1, +∞) ∪ (-1, 0).

Obviously, *D* is not symmetric.

Or we can see that $2 \in D$, but $-2 \notin D$. This also gives *D* is not symmetric.

1d. $D = \{x: \cos x \ge 0\}.$

Solution Given $x \in D$, we also have $-x \in D$ since $\cos(-x) = \cos x \geq 0$. So *D* is symmetric.

Exercise Give the domain of the following function. Also is the following function even or odd?

1e. $f(x) = \frac{1}{\sqrt{(|x|-2)(x^2+1)}}$ on the set given by **1a**; Solution $f(x) = f(-x)$ since $|x| = |-x|$ and $x^2 = (-x)^2$. So *f* is even.

1f. $f(x) = \cos x \sin x \sin 2x \sin 3x$;

Solution Since

$$
f(-x) = \cos(-x)\sin(-x)\sin(-2x)\sin(-3x)
$$

= cos x (-sin x)(-sin 2x)(-3x)
= -cos x sin x sin 2x sin 3x
= -f(x).

So *f* is odd.

1g.
$$
f(x) = \frac{|\sin 5x|}{\sin 2x}
$$
;
Solution

$$
f(-x) = \frac{|\sin(-5x)|}{\sin(-2x)} \n= \frac{|-\sin 5x|}{-\sin 2x} \n= \frac{|\sin 5x|}{-\sin 2x} = -f(x).
$$

So *f* is odd.

Exercise If f_1 and f_2 are odd, g_1 and g_2 are even, they are defined on the same symmetric domain. Is the following function even or odd?

1h.
$$
f_1(x) f_2(x)
$$

1i. $f_1(x) g_1(x)$
1j. $g_1(x) g_2(x)$
1k. $f_1(f_2(x))$

Solution for 1h. $f_1(-x) f_2(-x) = [-f_1(x)][-f_2(x)] = f_1(x) f_2(x)$, so $f_1(x) f_2(x)$ is even.

Solution for 1i. $f_1(-x)g_1(-x) = -f_1(x)g_1(x)$, so $f_1(x)g_1(x)$ is odd.

Solution for 1j. $g_1(-x)g_2(-x) = g_1(x)g_2(x)$, so $g_1(x)g_2(x)$ is even.

Solution for 1k $f_1(f_2(-x)) = f_1(-f_2(x)) = -f_1(f_2(x))$, so $f_1(f_2(x))$ is odd.

2. **Limit of functions** A real number *l* is a limit of $f(x)$ at $x = a$ if for any $\varepsilon > 0$, there exists $\delta > 0$ such that

if
$$
0 < |x - a| < \delta
$$
, then $|f(x) - l| < \varepsilon$

and write

$$
\lim_{x \to a} f(x) = l.
$$

Sequential criterion for limits of functions $\lim_{x\to a} f(x) = l$ if and only if for any sequence x_n with $\lim_{n\to\infty} x_n = a$, we have $\lim_{n\to\infty} f(x_n) = l$.

We have the following **properties** of limits: Both $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exists, and let *c* be any number. Then

 \rightarrow $\lim_{x \to a} [f(x) + cg(x)] = \lim_{x \to a} f(x) + c \lim_{x \to a} g(x);$

$$
\to \lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x);
$$

 \rightarrow $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ if li $\lim_{x\to a} f(x)$ if $\lim_{x\to a} g(x) \neq 0$.

Exercises It is known that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, do the following: **2a.** Let $f(x) = \frac{|\sin 3x|}{x}$, let a_n $\frac{13x}{x}$, let $a_n = \frac{1}{n}$ and $b_n = -\frac{1}{n}$, calculate $\frac{1}{n}$, calculate

$$
\lim_{n \to \infty} f(a_n) \quad \text{and} \quad \lim_{n \to \infty} f(b_n).
$$

Then does the limit $\lim_{x\to 0} f(x)$ exist?

Solution Since $0 = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, according to the sequential criterion and using $\lim_{x\to 0} \frac{\sin x}{x} = 1$, we have

$$
\lim_{n \to \infty} \frac{\sin 3a_n}{3a_n} = \lim \frac{\sin 3b_n}{3b_n} = 1.
$$

Since for *n* large, $0 < \frac{1}{n} < \pi/3$, so

$$
\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} \frac{|\sin 3a_n|}{a_n}
$$

$$
= \lim_{n \to \infty} \frac{\sin 3a_n}{a_n}
$$

$$
= \lim_{n \to \infty} \frac{\sin 3a_n}{3a_n} \cdot 3
$$

$$
= 3 > 0.
$$

Similary, we have

$$
\lim_{n \to \infty} f(b_n) = \lim_{n \to \infty} \frac{|\sin 3b_n|}{a_n}
$$

$$
= \lim_{n \to \infty} \frac{-\sin 3b_n}{b_n}
$$

$$
= \lim_{n \to \infty} \frac{-\sin 3b_n}{3b_n} \cdot 3
$$

$$
= 3 > 0.
$$

$$
\lim_{n \to \infty} f(b_n) = -3 \neq \lim_{n \to \infty} f(a_n).
$$

So the limit $\lim_{x\to 0} f(x)$ does not exist.

2b. Use also previous trignometric formulas, calculate

$$
\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x}.
$$

Solution

$$
\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x}
$$
\n
$$
= \lim_{x \to 0} \frac{\frac{\sin x}{\cos x} - \sin^3 x}{\sin^3 x}
$$
\n
$$
= \lim_{x \to 0} \frac{1 - \cos x}{\cos x \sin^2 x}
$$
\n
$$
= \lim_{x \to 0} \frac{\cos^2(\frac{x}{2}) + \sin^2(\frac{x}{2}) - [\cos^2(\frac{x}{2}) - \sin^2(\frac{x}{2})]}{\sin^2 x \cos x}
$$
\n
$$
= \lim_{x \to 0} \frac{2\sin^2(\frac{x}{2})}{(\frac{x}{2})^2} \cdot \frac{1}{\cos x} \cdot \frac{(\frac{x}{2})^2}{x^2} \cdot \frac{x^2}{\sin^2 x}
$$
\n
$$
= 2 \cdot 1 \cdot \frac{1}{4} \cdot 1 = \frac{1}{2}.
$$

2c. A function f is called **continuous** at *a* if $\lim_{x\to a} f(x) = f(a)$. Is the function

$$
f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}
$$

continous?

Solution Take any sequence a_n with $\lim_{n\to 0} a_n = 0$ where $a_n \neq 0$ for all *n*. Then $\lim_{n\to\infty} |a_n| = 0$. Since $-|a_n| \leq a_n \sin a_n \leq |a_n|$, by squeez theorem,

$$
\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} a_n \sin \frac{1}{a_n}
$$

$$
= 0 = f(0).
$$

By sequential criterion, this says that $\lim_{x\to 0} f(x) = 0 = f(0)$, so f is continuous at 0. *f* is continuous obviously elsewhere, so *f* is continuous.

Another solution to 2c

Since $-|x| \le x \sin \frac{1}{x} \le |x|$ and $\lim_{x\to 0} |x| = 0$, by sandwich theorem

$$
\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin \frac{1}{x} = 0 = f(0).
$$

So *f* is continuous at 0. *f* is obviously continuous elsewhere.